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Abstract

Marginal mean models of temporal processes in event time data analysis are gaining

more attention for its milder assumptions than the traditional intensity models. Recent

work of fully functional temporal process regression offers great flexibility by allowing

all the regression coefficients to be nonparametrically time-varying. The estimation

procedure, however, prevents successive goodness-of-fit test for covariate coefficient in

comparing a sequence of nested models. This article proposes a partly functional tem-

poral process regression model in the line of marginal mean models. Some covariate

effects are time-independent while the others are completely unspecified in time. This

class of models is very rich, including the fully functional model and semiparamet-

ric model as special cases. To estimate the parameters, we propose semiparametric

profile estimating functions which are solved via an iterative algorithm, starting with

a consistent parameter estimate from a fully functional model in the existing work.

No smoothing is needed, in contrast to other varying-coefficient methods. The weak

convergence of the resultant estimators are developed using the empirical process the-

ory. Successive tests of time-varying effects and backward model selection procedure
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can then be carried out. The practical usefulness of the methodology is demonstrated

through a simulation study and a real example of recurrent exacerbations among cystic

fibrosis patients.

Key Words: Cystic fibrosis; Estimating function; Functional regression; Generalized

linear model; Recurrent event; Semiparametric method.

1. INTRODUCTION

Event time data arise in a variety of fields such as engineering, social sciences, and biomedical

research. The quantity of interest is the time until some event occurs. In many applications,

the event can be recurrent, where an individual subject may experience multiple events.

Some examples of recurrent event data in the literature are times to system repairs (Lawless

and Nadeau 1995), times to product warranty claims (Kalbfleisch, Lawless, and Robinson

1991), times to unemployment (Lancaster 1990), and times to recurrent disease episodes

(Pepe and Cai 1993; Therneau and Hamilton 1997).

Event times have traditionally been analyzed based on intensities which model the in-

stantaneous risk for an event to occur (e.g. Kalbfleisch and Prentice 2002). For illustration,

consider a recurrent event setting, with Y (t) being the number of events occurred by time

t. The intensity function is defined as

λ(t) = lim
∆→0

1

∆
Pr{Y (t+ ∆)− Y (t) = 1|H(t)}, (1)

where H(t) is the history of the process up to time t. Covariate effects are incorporated into

the intensity either multiplicatively (Cox 1972) or additively (Aalen 1980). Intensity models

fully specify the stochastic nature of the event times, which may be too strong to assume in

many applications.

With milder assumptions, marginal mean models have been advocated recently (Pepe

and Cai 1993; Lawless and Nadeau 1995; Lin, Wei, Yang, and Ying 2000; Lin, Wei, and Ying

2001). These models study the temporal processes associated with the event times, such as
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point processes or counting processes, without fully specifying the stochastic structure of the

processes as intensity function (1) does. The focus is the mean of a temporal process Y (t)

marginalized at each time point in a time period of interest: µ(t) = E{Y (t)}. As Lin et al.

(2001) pointed out, marginal mean models have several advantages over intensity models:

mean function is more intuitive than intensity function; mean models do not require the

Poisson structure; and mean models can be used for point processes with positive jumps of

arbitrary size. The common form of these models with covariates has an unspecified baseline

mean function and time-independent covariate coefficients.

Extending the line of marginal mean models, Fine, Yan, and Kosorok (2004) proposed a

fully functional temporal process regression (TPR) model, where all the covariate coefficients,

not just the baseline, are completely unspecified over time as in Aalen’s (1980) model. Let

X(t) be a p× 1 vector of covariate, which may include an intercept. A TPR model specifies

the conditional mean function of Y (t) given X(t) by

g{µ(t|X)} = X>(t)α(t), (2)

where µ(t|X) = E{Y (t)|X(t)}, g is a known link function, and α(t) is a p×1 vector of time-

varying regression coefficients. At any fixed t, model (2) is a generalized linear model (GLM).

Considered over a time period, model (2) is a fully functional model in that all components

of α(t) are completely unspecified in time t, allowing robust exploration of the functional

forms of the coefficients. The time-varying coefficients at each time are estimated separately

from estimating functions using the cross-sectional data at that time. This model is a fully

functional extension of the marginal mean models advocated by Lawless and Nadeau (1995),

Lin et al. (2000), and Lin et al. (2001). In particular, the semiparametric transformation

model of Lin et al. (2001) has the form

g{µ(t|Z)} = α(t) + Z>(t)θ, (3)

where α(t) is a scalar function of t, Z(t) is a q× 1 vector of covariate, and θ is a q× 1 vector

of time-independent covariate coefficients. Note that g−1{α(t)} is interpreted as the baseline
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mean function with Z(t) = 0. Model (3) is much simpler than model (2) in that only the

intercept α(t) is functional while other covariate coefficient are time-independent.

The great flexibility of model (2) comes with some limitations. In estimating the fully

functional parameters, the variance-bias tradeoff may be critical in small to medium samples

and the number of covariates it can handle is therefore limited. Furthermore, it may be de-

sirable that some of the coefficients be parametric in many applications. This need arises, for

example, when there exists strong prior knowledge about the forms of particular coefficients,

or when the goodness-of-fit test after fitting model (2) suggests that a regression coefficient

is constant over time. Researchers are often interested in examining the time-varying coeffi-

cients in model (2) with a number of successive tests that investigate the covariates one at a

time. The approach of Fine et al. (2004), however, only allows limited parametric submodels

fitting at a second stage after nonparametric coefficient estimates have been obtained from

the fully functional model (2). Each covariate coefficient is tested against the full model

instead of the model accepted from a previous test. Successive testing necessitates the study

of partly functional models.

In this article, we propose a partly functional TPR (PFTPR) model

g{µ(t|X,Z)} = X>(t)α(t) + Z>(t)θ, (4)

where g is a twice continuously differentiable link function, µ(t|X,Z) = E{Y (t)|X(t), Z(t)},

X(t) is a p×1 covariate vector with time-varying coefficient α(t), and Z(t) is a q×1 covariate

vector with time-independent coefficient θ. This is a rich family of models. It reduces to

the fully functional TPR model of Fine et al. (2004) when Z is absent. It reduces to the

semiparametric transformation model of Lin et al. (2001) when X contains only an intercept.

The models of both Fine et al. (2004) and Lin et al. (2001) are rich families themselves.

Partly functional forms have been proposed for intensities models. Let λ(t|X,Z) be the

intensity conditional on X(t) and Z(t). A partly functional intensity model analogous to (4)

has the form

g{λ(t|X,Z)} = X>(t)α(t) + Z>(t)θ. (5)
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McKeague and Sasieni (1994) considered additive intensity models with g(u) = u. Mar-

tinussen, Scheike, and Skovgaard (2002) considered multiplicative intensity models with

g(u) = log u. These approaches are likelihood based and the estimation may involve smooth-

ing.

The goal of this paper is to develop inferences for the PFTPR model (4), the counterpart

of intensity model (5) in the line of marginal mean models. Estimation of the parameters in

the PFTPR model is through an approach called semiparametric profile estimating functions,

which reduces to the separate estimation method of Fine et al. (2004) when θ is given.

Unlike the likelihood based approaches, only the mean, instead of the complete stochastic

structure, of the temporal processes needs to be correctly specified to obtain consistent

estimators. Similar to the method of Fine et al. (2004), no smoothing is needed for the

functional coefficient estimation.

This paper is organized as follows. Estimation of the parameters θ and α(t) with semi-

parametric profile estimating functions is proposed in Section 2. The asymptotic properties

of the estimator are presented in Section 3. Hypothesis tests for parameter significance and

goodness-of-fit are developed in Section 4. A simulation study in a recurrent event setting

is reported in Section 5. The methodology is applied to a clinical trial in Section 6 to assess

the efficacy of a treatment for cystic fibrosis patients. A discussion concludes in Section 7.

2. ESTIMATION

Let Y (t) be a response temporal process, X(t) be a p × 1 vector of covariates with time-

varying coefficients, Z(t) be a q × 1 vector of covariates with time-independent coefficients,

and C be a censoring time. The information from the censoring time C is equivalent to a

data availability indicator process constructed as δ(t) = I(t < C). Suppose that, in a time

window [l, u], we observe n independent copies of {Y (t), X(t), Z(t), δ(t)}, denoted by

{Yi(t), Xi(t), Zi(t), δi(t)},
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i = 1, . . . , n. These data will be used to for inferences about the PFTPR model (4).

Similar to Fine et al. (2004), two assumptions associated with the data availability δ(t)

are required in order to carry out the methodology. The first assumption is

E{Y (t)|X(t), Z(t)} = E{Y (t)|X(t), Z(t), δ(t) = 1},

for each t ∈ [l, u]. That is, conditioning on covariate X(t) and Z(t), the mean of the

response Y (t) is the same whether or not the data is observed. This is analogous to the

“non-informative censoring” in the standard survival analysis, and to “missing at random”

in longitudinal data analysis (Little and Rubin 2002). The second assumption is positive

probability of complete data, that is,

Pr{δ(t) = 1|X(t), Z(t)} > 0

for each t ∈ [l, u]. This assumption ensures at least some information for the cross-sectional

data at each time point.

Estimation of the parameters in model (4) is challenging. Due to the presence of time-

independent coefficients θ, the estimate of the time-varying coefficients α(t) cannot be ob-

tained from separate estimating functions at each t as done for the fully functional model (2)

in Fine et al. (2004). The proposed estimation procedure obtains the estimate α̌(t, θ) for

a given θ from one estimating function and substitute α(t) with it to construct another

estimating function for θ.

We now introduce the notations used in the estimating functions. Let h be the inverse

function of the link function g. Let µi{α(t), θ} = h{X>
i (t)α(t) + Z>i (t)θ}, Di{α(t), θ} =

dh(v)/ dv|v=µi{α(t),θ}, and Vi{α(t), θ} = V [µi{α(t), θ}], where V is the variance function in a

GLM setting.

For a given θ and t ∈ [l, u], we estimate α(t) with the root of the estimating function

1

n

n∑
i=1

δi(t)Di{α(t), θ}V −1
i {α(t), θ}Xi(t)[Yi(t)− µi{α(t), θ}] = 0. (6)
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The nonparametric estimator of α(t) for a given θ, α̌(t; θ), is the quasi-likelihood estimator

with response Yi(t), covariate Xi(t), and an offset Z>i (t)θ, i = 1, . . . , n. Let l = τ0 < τ1 <

· · · < τM = u be all the jump points observed in the data. Then α(t) only needs to be

estimated at each of these jump points. This step is similar to the estimation method used

in Fine et al. (2004), except for an offset Z>i (t)θ.

To estimate θ, we propose the estimating function

1

n

n∑
i=1

∫ u

l

δi(t)Di{α̌(t; θ), θ}V −1
i {α̌(t; θ), θ}Zi(t)[Yi(t)− µi{α̌(t; θ), θ}] dHn(t) = 0, (7)

where Hn is an increasing weight function over [l, u], possibly random and converging uni-

formly to a fixed H(t) with bounded variation. Denote the solution to (7) by θ̂. The

corresponding estimator for α(t) is then α̂(t) = α̌(t; θ̂).

The above procedure is similar to the profile likelihood method. The difference is that

here we apply the idea of profiling to semiparametric estimating functions. Therefore we call

this procedure the semiparametric profile estimating function (SPEF) method. Numerically,

the SPEF estimate of α(t) and θ are obtained by alternate one-step-updating of the current

estimate in solving (6) and (7) until convergence. The initial values of the estimate are

hence important. We suggest getting initial values which are consistent from fitting the fully

functional model (2) of Fine et al. (2004) separately on a grid including the end points of

[l, u]. Initial values of α(t) are obtained by linear interpolation using the estimates at the

grid points; initial values of θ are obtained as the average of the estimates at the grid points.

In the simulation study in Section 5, the algorithm with these initial values converges very

fast. For example, 915 out of 1000 replications converged within 5 iterations in one of the

configurations with sample size n = 100.

3. ASYMPTOTIC PROPERTIES

The presence of the time-independent parameter θ also makes it challenging to establish

the asymptotic properties of the SPEF estimators θ̂ and α̂(t). Let θ0 and α0(t) be the true
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coefficients in the PFTPR model (4). We now discuss convergence properties of θ̂ to θ0 and

α̂(t) to α0(t). The empirical process theory will be used in the derivation, extending the

work of Fine et al. (2004) and Lin et al. (2001).

When computing the estimator θ̂ and α̂, we start with an initial estimator constructed

from the full functional model (2). This initial estimator is consistent by Theorem 1 of Fine

et al. (2004). Thus for the asymptotic results of θ̂, we can focus on a local neighborhood of θ0

and develop the weak convergence results only. We show that, with probability converging to

one, there exists an solution θ̂ to the estimating function (7) that is asymptotically normal.

The weak convergence of α̂ follows from result on θ̂. These results are formally summarized in

Theorem 1 and Theorem 2, with detailed regularity conditions R1–R5 and proofs presented

in the Appendix. A notation needed to present the theorems is ‖x‖, the L2 norm of any

vector or matrix x.

Theorem 1. For a sequence of positive numbers satisfying δn ↘ 0, let Nθ0,δn = {θ : ‖θ −

θ0‖ ≤ δn}. Let z̄ be the almost sure limit of Z̄ given in (A.9). Suppose that R1–R5 hold

and that matrix A given in (A.12) is nonsingular. Then, with probability converging to one,

there exists a θ̂ in Nθ0,δn that is a solution to the estimating function (7). Furthermore,

√
n(θ̂ − θ0) →D N(0, A−1BA−1),

with matrix A and B defined in (A.12) and (A.17), respectively.

Theorem 2. Suppose that R1–R5 hold and that A is nonsingular. Then,
√
n{α̂(t)− α0(t)}

converges in distribution to a Gaussian process with mean zero and covariance function

Σ(s, t) = E{1(s)>1 (t)}, where 1 is defined in (A.19).

The asymptotic covariance matrix A−1BA−1 for θ̂ and covariance function Σ(s, t) for α̂

can be consistently estimated by their empirical version with the true parameters replaced

by their estimates. These results are summarized in Theorem 3.

Theorem 3. Suppose that R1–R5 hold and that A is nonsingular.
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(a) The asymptotic variance-covariance matrix A−1BA−1 in Theorem 1 can be consis-

tently estimated by Â−1B̂Â−1, with Â and B̂ defined in (A.20) and (A.21).

(b) The asymptotic covariance function Σ of α̂ in Theorem 2 can be consistently estimated

by Σ̂(s, t) = 1
n

∑n
i=1 ̂i(t; θ̂, α̂)̂>i (s; θ̂, α̂), with ̂i defined in (A.22). In fact,

sup
(s,t)∈[l,u]×[l,u]

‖Σ̂(s, t)− Σ(s, t)‖ →p 0.

These theoretical properties of the parameter estimates form the foundation for signifi-

cance test and goodness-of-fit test in Section 4. In addition, the uniform results on α̂ can

be used to construct confidence bands for the time-varying coefficients with the resampling

method of Lin, Fleming, and Wei (1994) and van der Vaart and Wellner (1996).

4. HYPOTHESIS TESTING

Two important hypotheses in models with a component of time-varying regression coefficient

are that a regression coefficient is not significant

H0 : αj(t) = 0 (8)

and that a regression coefficient is constant

Hc : αj(t) = αj. (9)

Test statistics can be conveniently constructed using the estimate of αj(t): time-varying

estimate α̂j(t) and/or time-independent estimate α̂j. The asymptotic distribution of these

estimates given by the theorems in Section 3 can then be used to obtain the null distribution

of the test statistics. The goodness-of-fit testing problem (9) is more difficult than the

significance test problem (8), because it demands the joint distribution of both the time-

varying estimate α̂j(t) and time-independent estimate α̂j. We only study the goodness-of-fit

testing problem closely in this section, as the significance testing procedures can be obtained

in a similar but easier fashion.
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To examine the time-varying effects in model (2), Fine et al. (2004) use the nonparametric

estimate from the fully functional model to construct parametric estimate of αj at a second

stage. In particular, their parametric estimator of αj is

α̂j = arg min
η

∫ u

l

{α̂j(t)− η}2W (t) dt, (10)

where W (t) is a weight function, possibly data dependent with a limit, and α̂j(t) is the

nonparametric estimate from (2). Different covariate effects are investigated separately, all

based on the fully functional model without taking any account of that some covariate effects

may have been confirmed to be time-independent.

Model (4) makes successive tests of time-varying effects and backward model selection

procedure possible. To test the goodness-of-fit for a constant fit αj(t) = αj, two partly

functional models can be fit, one nested to the other. They differ only in the form of αj: the

full model has αj time-varying and the restricted model has αj time-independent. Let α̂F
j (t)

and α̂R
j be the estimate of αj from full model and restricted model, respectively. Goodness-

of-fit test can be constructed based on their discrepancy

∆(t) = α̂F
j (t)− α̂R

j . (11)

Examples test statistics are

T1

(
α̂F

j (·), α̂R
j

)
= sup

t∈[l,u]

|∆(t)W (t)|, (12)

T2

(
α̂F

j (·), α̂R
j

)
=

∫ u

l

|∆(t)|W (t) dt, (13)

T3

(
α̂F

j (·), α̂R
j

)
=

∫ u

l

∆2(t)W (t) dt, (14)

where W (t) is a weight function, possibly random with a limit. The weight W (t) may be

chosen to inversely weight the variation of ∆(t). It can also be chosen with higher values

on some segment in [l, u] than others to accentuate anticipated departures from Hc. Similar

test statistics have been used by Scheike (2004) in a partly functional model for intensities.

The limiting distribution of these test statistics depend on the influence functions from the
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two models, which can be used to approximate the limiting Gaussian process of ∆(t). The

limiting distribution of these test statistics need to be obtained via bootstrapping (Lin et al.

1994; van der Vaart and Wellner 1996). The size and power of these tests are studied via

simulation in the next section.

5. SIMULATION STUDIES

To investigate the performance of the SPEF estimators and test procedure, we conduct

simulation studies in a recurrent event setup. Let Y (t) be the number of events that have

occurred by time t. We include two time-independent covariates in the model: X is a binary

covariate, with probability 0.5 being 1, and Z is a truncated standard normal covariate in

(−2, 2). The true model is

E{Y (t)|ψ,X,Z} = ψ exp{α0(t) + α1(t)X + θ1Z}, (15)

where ψ is an independent gamma variate with mean 1 and variance σ2, α0(t) = log(t)

is a time-varying intercept, α1(t) is the to-be-configured coefficient of X, and θ1 = 0.5 is

the time-independent coefficient of Z. Censoring times are independently generated from a

uniform distribution over (0, 1/p), resulting 100p percent of censoring by time t = 1. Due to

numerical instability of log(t) as t↘ 0, the observation window [l, u] is chosen to be [0.15, 1].

There are four factors to be configured: time-varying coefficient α1(t), variance σ2 of the

random effect ψ, censoring proportion p, and sample size n. For α1(t), we consider three

choices: f1(t) = 1, f2(t) = 8t/3 if t < 0.5, 4/3 otherwise, and f3(t) = 1 − cos(πt). These

functions are plotted in Figure 1. Note that the average of these functions are the same over

(0, 1). That is, all three situations would yield the same estimate if the coefficient is specified

to be time-independent over (0, 1). Four values of σ2 are considered: 0, 0.25, 0.5, and 1.

This simulation setup is a modification of those used by Lin et al. (2001) and Fine et al.

(2004). Two values of p are considered: 0.3 and 0.6, corresponding to moderate and heavy

censoring. Three values of n are considered: 100, 200, and 400, in order to find how big n is
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needed for the large sample results. For each configuration, we generate 1,000 datasets.

[Figure 1 about here.]

We first study the performance of the time-independent estimator and time-varying es-

timator when the coefficient α1(t) is specified as time-varying and θ1 is specified as time-

independent. Therefore, the model is correctly specified when α1(t) is f2(t) or f3(t), but is

misspecified when α1(t) = f1(t) = 1. Table 1 summarizes the results for the estimation of

θ1. The estimator θ̂1 is virtually unbiased under all configurations. The sampling mean of

the standard error estimator in general agrees with the sampling standard error. For sample

size n = 100, this agreement is weakened as σ2 increases or as p increases. As a consequence,

the empirical coverage probability of 95% confidence intervals are slightly lower than the

nominal level for larger values σ2 and p. When the sample size is increased to n = 400, the

proposed standard error estimator reflects well the true variability of the estimators and the

the 95% confidence intervals have coverage probabilities close to the nominal level.

[Table 1 about here.]

Summary of the estimator of α1(t) is done graphically in Figure 2. To suppress the

result, only the most difficult situation for each choice of α1(t) is presented: σ2 = 1 and

p = 0.6. The sample size is n = 400. As evident from the Figure, the proposed estimators

are practically unbiased, and the proposed standard error estimator agrees well with the

empirical standard error.

[Figure 2 about here.]

We then study the efficiency gain of in the SPEF estimation of the coefficient of Z, θ1(t),

by constraining it to be constant. The estimator of θ1(t) obtained from two models are

compared. In the first model, all covariate coefficients, including θ1(t), are specified as time-

varying. The second model is the same as the first model, except that the θ1(t) is specified as

a constant θ1. This may be necessary when there is strong belief from substantive expert or
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after a goodness-of-fit test. Figure 3 presents the bias θ̂1(t)− θ1 as well as its pointwise 95%

confidence interval for the most difficult case for each choice of α1(t) with σ2 = 1 and p = 0.6

at sample size n = 400. The dark lines are from the unconstrained specification and gray

lines are from the constrained specification. The variation level of the estimator θ̂1 under

constant constraint is smaller than that of the nonparametric estimator θ̂1(t) for all t ∈ [l, u].

This implies that the prediction interval from a correctly specified partly functional model

is narrower than that from a fully functional model.

[Figure 3 about here.]

We finally investigate the performance of the goodness-of-fit test. This test essentially

compares two models: with or without constraining α1(t) to be constant, assuming that the

time-independent coefficient θ1 has already been correctly specified. The null hypothesis

H0 : α1(t) = γ. Table 2 reports the rejection rate of the goodness-of-fit test with size 0.05

under various configurations. The test statistics are T1, T2, and T3 with unit weight. When

α1(t) = f1(t), these rejection rates are the empirical size of the test. When α1(t) = f2(t) or

f3(t), these rejection rates are the empirical power of the test. The results in Table 2 shows

that the empirical size of the test is slightly over the nominal size when n = 100 but their

disagreement drops to a reasonable level when n = 400. All three test statistics work well,

with T1 having the highest power but highest discrepancy in nominal and empirical size.

The power of the test is shown to be substantial. The time-varying nature of f2(t) is much

weaker than that of f3(t). Therefore, the power of test when α1(t) = f2(t) is lower than that

when α1(t) = f3(t). Even for the more difficult case of α1(t) = f2(t) with σ2 = 1, p = 0.6

and n = 100, the test statistic T1 rejects the constant coefficient H0 49.4% of the the time.

In the case of α1(t) = f3(t), all the test rejects the constant coefficient H0 almost all the

time even for n = 100.

[Table 2 about here.]
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6. EXAMPLE

We illustrate through an example the SPEF estimation of partly functional temporal process

regression and its usage in successive goodness-of-fit testing for the constancy of covariate

coefficients one at a time. Consider the rhDNase data (Therneau and Hamilton 1997) which

has been used by Lin et al. (2001) to motivate their semiparametric transformation model.

This data is from a double blind clinical trial to assess the efficacy of rhDNase, a highly puri-

fied recombinant enzyme, in treating cystic fibrosis patients, who often suffer from repeated

pulmonary exacerbation. There were 321 patients on rhDNase and 324 on placebo. Most of

the patients were followed for 24 weeks. Many of them experienced multiple episodes of ex-

acerbations. The most important covariate is FEV, the baseline record of forced expiratory

volume in the first second. Researchers are interested in assessing the efficacy of rhDNase

on reducing the number of exacerbations Y (t) after taking into account other significant risk

factors. In this section, we compare temporal process regression models with two covariates:

treatment indicator TRT (rhDNase = 1) and FEV. Existing analyses (Lin et al. 2001) have

indicated that the treatment effect may not be adequately captured by a proportional means

model. Using the partly temporal process regression methodology, we will find marginal ev-

idence that the coefficient of treatment is time-varying, given that the coefficient of FEV is

specified as constant over time.

The fully functional temporal process regression model (Fine et al. 2004) for Y (t) is

E{Y (t)|TRT,FEV} = exp{α0(t) + α1(t)TRT + θ1(t)FEV}, (16)

where α0(t) is a nonparametric intercept, and α1(t) and θ1(t) are time-varying covariate

coefficients for TRT and FEV, respectively. The link function used here is the logarithm

function, which is common for count data in a GLM setting. A proportional means model

(Lin et al. 2000) constrains α1(t) = α1 and θ1(t) = θ in model (16). Denote model (16) by

M0 and the constrained model by M3. There are two intermediate partly functional models

between M0 and M3. Model M1 constrains α1(t) = α1 in M0 and model M2 constrains
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θ1(t) = θ1 in M0. Both model M1 and model M2 nest M3. All models are fitted over time

window [10, 160] days.

The coefficient estimates and their pointwise 95% confidence intervals for the fully func-

tional model M0 are displayed as gray lines in Figure 4. The same quantities for model M2,

where the coefficient of FEV is constrained to be time-independent, are overlayed as dark

lines in Figure 4. The time-independent estimate θ̂1 in model M2 is close to the time-varying

estimate θ̂1(t) in model M0, but with a smaller variation, particularly for the early time

period. The estimate α̂1(t) from the two models are virtually the same. The estimate α̂0(t)

from the two models are only slightly different during the early time period, which is not

surprising given the difference in θ̂1(t) in the same time period. We have also overlayed

the results of model M0 and model M1, which gives similar observations and hence is not

reported.

[Figure 4 about here.]

The estimation results from model M2 and model M3 are overlayed in Figure 5, with gray

lines representing model M2 and dark lines representing model M3. Both models constrain

the effect of FEV to be time-independent and yield virtually the same point estimate and

confidence interval. The time-independent estimate α̂1 in model M3 seems to be averaging

the time-varying α̂1(t) in model M2. The intercept estimate α̂0(t) from the two models are

also very close.

[Figure 5 about here.]

Both covariate coefficients have been shown to be significantly different from zero in

existing analyses. Therefore, we now focus on the goodness-of-fit of constant coefficient

for each covariate. Figure 4 suggests a constant model for the FEV coefficient. A formal

goodness-of-fit test for H0 : θ1(t) = θ1 in model M0 can be carried out by comparing the

full model M0 and the constrained model M2. The test statistics in Section 4 are obtained
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with 2,000 bootstrapping samples. The observed test statistics have p-values 0.470, 0.707,

and 0.677, suggesting that a constant FEV coefficient may be appropriate. The goodness-

of-fit test of constant TRT effect in model M0 yields p-values 0.055, 0.061, and 0.067, which

provides marginal evidence against constant TRT coefficient. From the graphical display and

these test results, we proceed with the time-independent specification of the FEV effect and

conditioning on this specification, test the goodness-of-fit of constant TRT effect again. This

time, the models under comparison are the full model M2 and the constrained model M3

presented in Figure 5. The goodness-of-fit test results p-values 0.042, 0.048, and 0.052, still

marginal but slightly stronger evidence against the constant TRT coefficient. Note that this

comparison of M3 and M2 can not be obtained from the fully functional temporal process

regression methodology developed in Fine et al. (2004). The successive goodness-of-fit test

is made possible by the proposed partly functional model.

As an illustration, Figure 6 presents the observed and the first 50 simulated Gaussian

processes used in the goodness-of-fit test above for constant covariate coefficient. We observe

that the most extreme deviation in the goodness-of-fit testing for constant TRT effect occurs

in the latter time period in Figure 6, indicating that the treatment efficacy of rhDNase may

be diminishing after about 100 days. This finding is consistent with those in Therneau and

Hamilton (1997) and Lin et al. (2001).

[Figure 6 about here.]

7. DISCUSSION

The proposed PFTPR model is in the line of marginal mean models. It has the most general

form and covers as special cases the wide model classes, for example, Fine et al. (2004),

Lin et al. (2001), and subclasses therein. The proposed model advances the mean modeling

of temporal processes to a new level of flexibility comparable to that of intensity models.

The significance of covariate effects and the goodness-of-fit of their parametric forms can be

tested sequentially and used in model selection.
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The model parameters are interpreted marginally for each t. In the presence of time-

varying covariates, the regression coefficient should be interpreted with care. As distin-

guished by Kalbfleisch and Prentice (2002), time-varying covariates can be internal or ex-

ternal. Marginal mean models are easier to interpret with external time-varying covariates.

The methodology can be of particularly help in understanding the natural history of disease

progression with only mild assumptions. Use of internal time-varying covariates, on the other

hand, can be misleading, especially in assessing treatment effect in randomized studies.

Straightforward application of the standard estimating function method is not appro-

priate for the PFTPR model, because it contains a finite dimensional parameter and a

nonparametric parameter. To deal with the presence of two different kinds of parameters,

we proposed the SPEF approach, which extends the separate estimating function approach

and keeps the advantage of no smoothing from Fine et al. (2004). While the SPEF method

is designed specifically for the PFTPR, it can be used as a general procedure for solv-

ing semiparametric estimating function problems with both finite- and infinite-dimensional

parameters. Some related works on profile estimating functions are developed under the

presence of nuisance parameters (Wang and Hanfelt 2003; Jørgensen and Knudsen 2004). In

our case, both kinds of parameters are of interests. The plug-in of α̌ in the SPEF approach

has consequences in the asymptotic properties of the resulting estimator in terms of both

bias and variance. They are accounted for in our derivation of the weak convergence of θ̂ in

Theorem 1. A similar treatment was used by Lin et al. (2001).

The efficiency of the SPEF estimator from the alternate updating algorithm may be

improved by accounting for the temporal correlation of the observations from the same

temporal process. The estimation of the fully functional regression coefficients in Fine et al.

(2004) is a functional extension of the generalized estimating function (Liang and Zeger 1986)

under “working independence”. It has been criticized for its low efficiency, particularly for

time points where censoring is heavier. To improve the efficiency, Fine et al. (2004) proposed

a one-step update of the “working independence” estimator by the generalized estimating
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function approach applied to the discretized temporal processes on a fine grid. This method

is not practical for two reasons. First, a dense grid yields extremely high correlation between

neighboring points, which may cause numerical instability if a working correlation matrix as

close as possible to the true temporal correlation is to be used. Second, even if the inversion

of the working correlation matrix were not a problem, the inversion is expensive when the

grid is dense. This efficiency problem still exists with the proposed estimation procedure for

the PFTPR model. It is an interesting topic of future research how to increase the efficiency

of the estimator by better accounting for the temporal correlation with methods that are

computationally tractable and numerically stable.

A. PROOFS OF THE THEOREMS

We now prove the results state in Section 3. We assume the following regularity conditions,

which are similar to those in Fine et al. (2004) with some modifications.

R1: The time-varying coefficient α0(t) is right-continuous with left-hand limits, or cadlag.

In addition, supt∈[l,u] ‖α0(t)‖ <∞.

R2: The inverse link function h and its derivative ḣ are Lipschitz continuous and bounded

on compact sets, and at θ0, the variance function V1 is differentiable.

R3: {Yi(t), Xi(t), Zi(t), δi(t) : i = 1, . . . , n} are independent and identically distributed,

{X>
i (t), Z>i (t)}> are cadlag and have total variation on [l, u] bounded by some constant

c <∞, almost surely, and the total variation of Yi(t) has bounded second moment.

R4: inft∈[l,u] λmin[E{δ1(t)W1(t)W
>
1 (t)}] > 0, where λmin is the smallest eigenvalue of a matrix

and W1(t) = {X>
1 (t), Z>1 (t)}>.

R5: Write V1(t;α, θ) = V1{α(t), θ}. For all bounded functions A in Rq and θ ∈ Rp, the

class of random functions {V1(t;α, θ) : α ∈ A, t ∈ [l, u]} is bounded above and below by

positive constants, is bounded in uniform entropy integral (van der Vaart and Wellner 1996,

p.58) with bounded envelope, and is pointwise measurable (van der Vaart and Wellner 1996,

p.111).
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We note that R5 is satisfied if V1(t;α, θ) = V [X>(t)α(t) + Z>(t)θ] for a nonrandom

Lipschitz continuous function V .

For simplicity, we only prove the results for a fixed Hn(t) ≡ H(t). Only minor modifi-

cations are needed for Hn that converges uniformly to H with bounded variation over [l, u].

Denote

w1i(t; θ, α) = δi(t)Di{α(t), θ}V −1
i {α(t), θ}Xi(t),

w2i(t; θ, α) = δi(t)Di{α(t; θ), θ}V −1
i {α(t; θ), θ}Zi(t).

Let

U1n(α; t, θ) =
1

n

n∑
i=1

w1i(t; θ, α)[Yi(t)− µi{α(t), θ}],

U2n(θ;α) =
1

n

n∑
i=1

∫ u

l

w2i(t; θ, α)[Yi(t)− µi{α(t; θ), θ}] dH(t).

Then the estimating functions (6) and (7) can be written as

U1n(α; t, θ) = 0, and U2n(θ; α̌) = 0. (A.1)

The following Lemmas are needed for the proofs.

Lemma 1. Under the regularity conditions R1–R5,

U2n(θ0; α̌) = U2n(θ0, α0)+
1

n

n∑
i=1

∫ u

l

w2i(t; θ0, α0)Di{α0(t), θ0}[α̌(t; θ0)−α0(t)] dH(t)+op(n
−1/2).

Proof. With slight abuse of notation in this proof, we write w2i(t;α) = w2i(t; θ0, α) and

α̌(t; θ0) = α̌(t). By the definition of U2n and some algebra, we have

U2n(θ0, α̌)− U2n(θ0, α0) = I1n + I2n, (A.2)

where

I1n =
1

n

n∑
i=1

∫ u

l

w2i(t; α̌)[−µi{α̌(t), θ0}+ µi{α0(t), θ0}] dH(t),

and

I2n =
1

n

n∑
i=1

∫ u

l

[w2i(t; α̌)− w2i(t;α0)][Yi(t)− µi{α0(t), θ0}] dH(t).
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First consider I2n. By Theorem A1 in Fine et al. (2004), supt∈[l,u] ‖α̌(t; θ0)− α0(t)‖ = op(1).

Therefore, under conditions R2 and R4,

E‖w2i(t; α̌)− w2i(t;α0)‖2 →p 0.

By the definition of the model, E[Yi(t)− µi(t;α0)] = 0. Furthermore, the class

{[w2i(t;α)− w2i(t;α0)][Yi(t)− µi{α0(t), θ0}] : α is cadlag, t ∈ [l, u]}

is Donsker by Theorem 2.5.2 of van der Vaart and Wellner (1996). Therefore, under R1–R5,

by Lemma 19.24 of van der Vaart (1998), we have I2n = op(n
−1/2).

Now consider I1n. Under R2, by Taylor expansion and supt∈[l,u] ‖α̌(t; θ0) − α0(t)‖ =

Op(n
−1/2) (Fine et al. 2004)

−µi{α̌(t), θ0}+ µi{α0(t), θ0} = −Di{α0(t)}X>
i (t)[α̌(t)− α0(t)] + op(n

−1/2). (A.3)

Thus

sup
t∈[l,u]

|µi{α̌(t), θ0} − µi{α0(t), θ0}| = Op(n
−1/2).

Similarly,

sup
t∈[l,u]

‖w2i(t; α̌)− w2i(t;α0)‖ = Op(n
−1/2).

Therefore,

1

n

n∑
i=1

∫ u

l

[w2i(t; α̌)− w2i(t;α0)][−µi{α̌(t), θ0}+ µi{α0(t), θ0}] dH(t) = Op(n
−1).

It follows that

I1n =
1

n

n∑
i=1

∫ u

l

w2i(t;α0)[−µi{α̌(t), θ0}+ µi{α0(t), θ0}] dH(t) + op(n
−1/2). (A.4)

Combining (A.2), (A.3), and (A.4), Lemma 1 follows.

Lemma 2. Let U̇2n be the derivative of U2n with respect to θ. Suppose that R1–R5 hold. For

any θ ∈ Nθ0,δn, we have

U2n(θ; α̌) = U2n(θ0, α̌) + U̇2n(θ0; α̌)(θ − θ0) + op(‖θ − θ0‖).
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Proof. Let U̇2n be the derivative of U2n with respect to θ. By Taylor expansion,

U2n(θ; α̌) = U2n(θ0, α̌) + U̇2n(θ0; α̌)(θ − θ0) + [U̇2n(θ̃; α̌)− U̇2n(θ0; α̌)](θ − θ0), (A.5)

for some θ̃ ∈ Nθ0,δn . So to prove the lemma, it suffices to show that

sup
θ∈Nθ0,δn

‖U̇2n(θ; α̌)− U̇2n(θ0; α̌)‖ = op(1). (A.6)

Direct calculation shows

U̇2n(θ; α̌) = n−1

n∑
i=1

∫ u

l

δi(t)D
2
i {α̌(t; θ), θ}V −1

i {α̌(t; θ), θ}Zi(t)

{
Z>i (t) +X>

i (t)
∂α̌>(t; θ)

∂θ

}
dH(t).

(A.7)

Differentiation of the first equation in (A.1) with respect to θ yields

∂α̌>(t; θ)

∂θ
= −Z̄(t, θ, α̌), (A.8)

where

Z̄(t, θ, α) =

[
n∑

i=1

δi(t)D
2
i {α(t), θ}V −1

i {α(t), θ}Xi(t)X
>
i (t)

]−1

×[
n∑

i=1

δi(t)D
2
i {α(t), θ}V −1

i {α(t), θ}Xi(t)Z
>
i (t)

]
. (A.9)

Expressions (A.7), (A.8), and (A.9) show that U̇2n can be expressed in terms of α̌ and does

not depend on the derivative of α̌ with respect to θ. Now, by the triangle inequality,

‖α̌(t; θ)− α0(t)‖ ≤ ‖α̌(t; θ)− α̌(t; θ0)‖+ ‖α̌(t; θ0)− α0(t)‖.

= ‖Z̄>(t, θ̃, α̌)(θ − θ0)‖+ ‖α̌(t; θ0)− α0(t)‖, (A.10)

for some θ̃ ∈ Nθ0,δn . Under R1–R5, Z̄>(t, θ̃, α̌) is bounded in probability and supt∈[l,u] ‖α̌(t; θ0)−

α0(t)‖ = op(1) (Fine et al. 2004). It follows that

sup
‖θ−θ0‖≤δn,t∈[l,u]

‖α̌(t; θ)− α0(t)‖ = op(1).

Therefore, (A.6) follows from R2, R3, and R5. Now Lemma 2 follows from (A.5) and

(A.6).
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Proof of Theorem 1. The existence of a solution to (7) with high probability follows from

the asymptotic linearity of U2n(θ, α̌) in Nθ0,δn in Lemma 2. Furthermore, by Lemma 2,

√
n(θ̂ − θ0) = −U̇−1

2n (θ0, α̌)
√
nU2n(θ0, α̌) + op(1). (A.11)

By (A.7), (A.8), (A.9) and some algebra, we have

U̇2n(θ0, α̌) =
1

n

n∑
i=1

∫ u

l

δi(t)D
2
i {α̌(t), θ0}V −1

i {α̌(t), θ}Zi(t){Z>i (t)−X>
i (t)Z̄(t; θ0, α̌)} dH(t)+op(1).

By the uniform convergence of α̌(·; θ0) to α0 (Fine et al. 2004), we have

U̇2n(θ0, α̌) =
1

n

n∑
i=1

∫ u

l

δi(t)D
2
i {α0(t), θ0}V −1

i {α0(t), θ}Zi(t){Z>i (t)−X>
i (t)Z̄(t; θ0, α0)} dH(t)+op(1),

By the uniform strong law of large number, Z̄(t; θ0, α0) converges almost surely to a non-

random function z̄(t; θ0, α0) uniformly for t ∈ [l, u]. Therefore, U̇2n(θ0, α̌) converges almost

surely to a nonrandom function A(θ0). Let A = A(θ0) and z̄(t) = z̄(t; θ0, α0). Then

A = E

∫ u

l

δi(t)D
2
i {α0(t), θ}V −1

i {α0(t), θ}Zi(t){Z>i (t)−X>
i (t)z̄(t)} dH(t). (A.12)

By Lemma 2,

U2n(θ0; α̌) = U2n(θ0, α0)+
1

n

n∑
i=1

∫ u

l

w2i(t; θ0, α0)Di{α0(t), θ0}[α̌(t; θ0)−α0(t)] dH(t). (A.13)

By Theorem 2 of Fine et al. (2004),

α̌(t; θ0)− α0(t) =

[
n∑

i=1

δi(t)D
2
i {α0(t), θ0}V −1

i {α0(t), θ0}Xi(t)X
>
i (t)

]−1

×[
n∑

i=1

Xi(t)Mi(t; θ0, α0)

]
+ op(n

−1/2), (A.14)

where

Mi(t; θ, α) = δi(t)Di{α(t), θ}Vi{α(t), θ} [Yi(t)− µi{α(t), θ}] . (A.15)

By putting (A.14) into (A.13) and switching the order of the obtained double summation,

we have

U2n(θ0; α̌) =
1

n

n∑
i=1

κi + op(1), (A.16)
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where

κi =

∫ u

l

Mi(t; θ0, α0){Zi(t)−Xi(t)z̄(t)} dH(t).

Multivariate central limit theorem implies that n1/2U2n(θ0; α̌) converges in distribution to

N(0, B), where

B = Eκ1κ
>
1 . (A.17)

This result and (A.11) then complete the proof.

Proof of Theorem 2. First note that α̂(t) = α̌(t; θ̂) and

√
n{α̂(t)− α0(t)} =

√
n{α̌(t; θ0)− α0(t)}+

√
n{α̌(t; θ̂)− α̌(t; θ0)}

=
√
n{α̌(t; θ0)− α0(t)} − z̄(t)

√
n(θ̂ − θ0) + op(1),

where the second equality follows from the Taylor expansion of α̂, ‖θ̂ − θ0‖ = Op(n
−1/2),

expression (A.8), and the convergence of Z̄(t). After some lengthy calculation, we have

√
n{α̂(t)− α0(t)} =

1√
n

n∑
i=1

i(t) + op(1), (A.18)

where

i(t) =
[
E{δi(t)D2

i {α0(t), θ}V −1
i {α0(t), θ}Xi(t)X

>
i (t)}

]−1
Xi(t)Mi(t)− A−1z̄(t)κi. (A.19)

Now the class {1 : t ∈ [l, u]} is a Donsker class. From the functional central limit theo-

rem,
√
n{α̂(t) − α0(t)} converge to a zero-mean Gaussian process with covariance function

Σ(s, t) = E{1(s)1(t)} at (s, t) ∈ [l, u]2.

To obtain consistent estimator for variance matrix A−1BA−1 we consider the sample

versions of matrix A and B. Let

Â =
1

n

n∑
i=1

∫ u

l

δiD
2
i (α̂(t), θ̂)V −1

i {α̂(t), θ̂)Zi(t){Zi(t)
> −X>

i Z̄(t; θ̂, α̂)} dHn(t), (A.20)

and

B̂ =
1

n

n∑
i=1

κ̂iκ̂
>
i , (A.21)

23



where

κ̂i =

∫ u

l

Mi(t; θ̂, α̂){Zi(t)−Xi(t)Z̄(t; θ̂, α̂)} dHn(t).

Our estimator of A−1BA−1 is then Â−1B̂Â−1. Similarly, to estimate Σ(s, t), we consider

sample versions of the influence functions i’s. Let

̂i(t; θ, α) = w−1
n (t; θ, α)Xi(t)Mi(t; θ, α)− Â−1Z̄(t; θ, α)κi(t; θ, α), (A.22)

where

wn(t; θ, α) =
1

n

n∑
i=1

δi(t)D
2
i {α(t), θ}V −1

i {α(t), θ}Xi(t)X
>
i (t).

Out estimator of Σ(s, t) is Σ̂(s, t) = 1
n

∑n
i=1 ̂i(s; θ̂, α̂)̂>i (t; θ̂, α̂).

Proof of Theorem 3. Write

Â =
1

n

n∑
i=1

ψi(θ̂, α̂),

where

ψi(θ, α) =

∫ u

l

δiD
2
i {α(t), θ}V −1

i {α(t), θ}Zi(t){Zi(t)
> −X>

i Z̄(t; θ, α)} dHn(t).

Under R1–R3 and R5, first applying Glivenko-Cantelli to Z̄, we have

Â =
1

n

n∑
i=1

ψ∗i (θ̂, α̂) + op(1),

where

ψ∗i (θ, α) =

∫ u

l

δiD
2
i {α(t), θ}V −1

i {α(t), θ)Zi(t){Zi(t)
> −X>

i z̄(t)} dHn(t).

For a finite c > 0, let A = {α : α is cadlag and supt∈[l,u] |α(t)| ≤ c}. Since A is bounded in

uniform entropy integral (van der Vaart and Wellner 1996, (2.5.1), page 127), under R1, R2,

and R5, the class {ψ∗1(θ, α) : θ ∈ Θ, α ∈ A} is Donsker (van der Vaart and Wellner 1996,

Theorem 2.5.2), and hence Glivenko-Cantelli. It follows that, under R1–R5,

Â = Eψ∗1(θ̂, α̂) + op(1) = Eψ∗1(θ0, α0) + op(1) = A+ op(1).

Similarly, it can be shown that B̂ = B + op(1). So part (a) follows from Slutzky’s lemma.

Part (b) can be proved similarly by using the Glivenko-Cantelli Theorem.
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Figure 1: Three choices of true α1(t).
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Figure 2: Summary of the simulation result for time-varying coefficient estimator α̂1(t). The
dark curves are the sampling bias and pointwise 95% confidence interval. The gray lines
are the pointwise 95% confidence interval constructed using the proposed standard error
estimator.
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Figure 3: Efficiency comparison of the time-independent coefficient estimator θ̂1.
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Figure 4: Overlayed coefficient estimates and pointwise 95% confidence intervals: model M0
(gray lines) and model M2 (dark lines).
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Figure 5: Overlayed coefficient estimates and pointwise 95% confidence intervals: model M2
(gray lines) and model M3 (dark lines).
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Figure 6: Observed (dark lines) and simulated Gaussian processes (gray lines) used in
goodness-of-fit test for constant covariate coefficient. (a) Model M2 against model M0.
(b) Model M1 against model M0. (c) Model M3 against model M2.
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Table 1: Summary of the simulation result for time-independent coefficient estimator θ̂1: p:
SE: empirical standard error; SEE: mean of standard error estimate; CP: coverage probabil-
ity.

n = 100 n = 400

α1(t) p σ2 Bias SE SEE CP Bias SE SEE CP
f1(t) 0.3 0.00 −0.004 0.105 0.102 0.933 0.002 0.052 0.051 0.943

0.25 0.005 0.131 0.122 0.927 0.001 0.067 0.064 0.942
0.50 −0.005 0.157 0.140 0.908 0.002 0.078 0.074 0.932
1.00 0.003 0.191 0.170 0.902 −0.000 0.093 0.090 0.951

0.6 0.00 0.001 0.123 0.112 0.918 0.003 0.057 0.058 0.943
0.25 0.000 0.151 0.136 0.923 0.000 0.072 0.071 0.951
0.50 0.003 0.173 0.154 0.901 −0.003 0.084 0.081 0.933
1.00 −0.010 0.207 0.181 0.898 −0.005 0.103 0.098 0.921

f2(t) 0.3 0.00 0.004 0.096 0.089 0.936 0.002 0.045 0.045 0.944
0.25 −0.003 0.121 0.115 0.925 0.001 0.060 0.060 0.951
0.50 −0.001 0.153 0.136 0.908 −0.001 0.076 0.071 0.918
1.00 −0.004 0.183 0.164 0.912 −0.001 0.096 0.090 0.923

0.6 0.00 0.003 0.111 0.100 0.912 0.000 0.054 0.051 0.934
0.25 −0.002 0.139 0.128 0.920 0.000 0.071 0.067 0.928
0.50 0.005 0.164 0.148 0.903 0.000 0.082 0.079 0.926
1.00 −0.004 0.219 0.181 0.884 −0.004 0.104 0.100 0.931

f3(t) 0.3 0.00 0.001 0.076 0.073 0.936 0.001 0.037 0.037 0.952
0.25 0.005 0.114 0.105 0.913 −0.001 0.055 0.055 0.946
0.50 −0.003 0.141 0.128 0.916 −0.003 0.071 0.069 0.942
1.00 0.008 0.187 0.164 0.908 −0.002 0.093 0.089 0.933

0.6 0.00 0.000 0.090 0.083 0.926 0.002 0.043 0.043 0.940
0.25 −0.003 0.130 0.118 0.914 −0.003 0.067 0.063 0.929
0.50 −0.003 0.169 0.145 0.893 −0.002 0.083 0.078 0.931
1.00 −0.011 0.213 0.180 0.887 −0.003 0.106 0.102 0.928
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Table 2: Rejection rate of goodness-of-fit testing for α1(t) = γ. For sample size 100 and 200,
the results are based on 1000 replicates, each using 1000 bootstraps. For sample size 400,
the results are based on 400 replicates, each using 500 bootstraps.

n = 100 n = 200 n = 400

α1(t) p σ2 T1 T2 T3 T1 T2 T3 T1 T2 T3

f1(t) 0.3 0.00 0.075 0.058 0.057 0.058 0.048 0.044 0.052 0.048 0.043
0.25 0.093 0.064 0.067 0.073 0.061 0.067 0.048 0.037 0.040
0.50 0.081 0.056 0.062 0.056 0.048 0.045 0.045 0.037 0.035
1.00 0.107 0.077 0.080 0.074 0.061 0.059 0.060 0.050 0.043

0.6 0.00 0.084 0.066 0.062 0.062 0.043 0.044 0.062 0.040 0.048
0.25 0.084 0.049 0.051 0.046 0.047 0.045 0.050 0.060 0.060
0.50 0.063 0.053 0.052 0.056 0.045 0.047 0.060 0.060 0.060
1.00 0.091 0.066 0.069 0.073 0.057 0.054 0.058 0.058 0.062

f2(t) 0.3 0.00 0.588 0.483 0.527 0.848 0.796 0.832 0.990 0.990 0.993
0.25 0.602 0.461 0.495 0.841 0.772 0.805 0.990 0.978 0.988
0.50 0.614 0.526 0.566 0.826 0.760 0.793 0.990 0.975 0.980
1.00 0.580 0.456 0.496 0.805 0.727 0.758 0.985 0.968 0.983

0.6 0.00 0.538 0.455 0.484 0.752 0.694 0.733 0.975 0.965 0.973
0.25 0.509 0.410 0.437 0.753 0.685 0.729 0.970 0.963 0.970
0.50 0.503 0.374 0.425 0.756 0.652 0.712 0.948 0.940 0.953
1.00 0.494 0.332 0.383 0.729 0.601 0.661 0.950 0.907 0.943

f3(t) 0.3 0.00 0.997 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.993 0.992 0.993 1.000 1.000 1.000 1.000 1.000 1.000
1.00 0.996 0.993 0.995 1.000 1.000 1.000 1.000 1.000 1.000

0.6 0.00 0.990 0.994 0.994 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.988 0.986 0.988 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.977 0.984 0.984 0.999 0.999 0.999 1.000 1.000 1.000
1.00 0.964 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
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